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1 Introduction

The problem of resolving the identity of a person can be categorized into two fundamentally dis-

tinct types of problems with different inherent complexities [1]: (i) verification and (ii) recognition.

Verification (authentication) refers to the problem of confirming or denying a person’s claimed

identity (Am I who I claim I am?). Recognition (Who am I?) refers to the problem of establish-

ing a subject’s identity1. A reliable personal identification is critical in many daily transactions.

For example, access control to physical facilities and computer privileges are becoming increas-

ingly important to prevent their abuse. There is an increasing interest in inexpensive and reliable

personal identification in many emerging civilian, commercial, and financial applications.

Typically, a person could be identified based on (i) a person’s possession (“something that you

possess”), e.g., permit physical access to a building to all persons whose identity could be au-

thenticated by possession of a key; (ii) person’s knowledge of a piece of information (“something

that you know”), e.g., permit login access to a system to a person who knows the user-id and a

password associated with it. Another approach to positive identification is based on identifying

physical characteristics of the person. The characteristics could be either a person’s physiologi-

cal traits, e.g., fingerprints, hand geometry, etc. or her behavioral characteristics, e.g., voice and

1Often, recognition is also referred to as identification.
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signature. This method of identification of a person based on his/her physiological/behavioral

characteristics is called biometrics. Since the biological characteristics can not be forgotten (like

passwords) and can not be easily shared or misplaced (like keys), they are generally considered to

be a more reliable approach to solving the personal identification problem.

2 Emerging Applications

Accurate identification of a person could deter crime and fraud, streamline business processes,

and save critical resources. Here are a few mind boggling numbers: about one billion dollars in

welfare benefits in the United States are annually claimed by “double dipping” welfare recipients

with fraudulent multiple identities [33]. MasterCard estimates the credit card fraud at $450 million

per annum which includes charges made on lost and stolen credit cards: unobtrusive positive

personal identification of the legitimate ownership of a credit card at the point of sale would greatly

reduce the credit card fraud; about 1 billion dollars worth of cellular telephone calls are made

by the cellular bandwidth thieves – many of which are made from stolen PINS and/or cellular

telephones. Again, an identification of the legitimate ownership of the cellular telephones would

prevent cellular telephone thieves from stealing the bandwidth. A reliable method of authenticating

legitimate owner of an ATM card would greatly reduce ATM related fraud worth approximately

$3 billion annually [6]. A positive method of identifying the rightful check payee would also

reduce billions of dollars that are misappropriated through fraudulent encashment of checks each

year. A method of positive authentication of each system login would eliminate illegal break-ins

into traditionally secure (even federal government) computers. The United States Immigration and

Naturalization service stipulates that it could each day detect/deter about 3,000 illegal immigrants

crossing the Mexican border without delaying legitimate persons entering the United States if it

had a quick way of establishing positive personal identification.

High speed computer networks offer interesting opportunities for electronic commerce and

electronic purse applications. Accurate authentication of identities over networks is expected to

become one of the important application of biometric-based authentication.

Miniaturization and mass-scale production of relatively inexpensive biometric sensors (e.g.,

solid state fingerprint sensors) will facilitate the use of biometric-based authentication in asset

protection.
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3 Fingerprint as a Biometric

A smoothly flowing pattern formed by alternating crests (ridges) and troughs (valleys) on the pal-

mar aspect of hand is called a palmprint. Formation of a palmprint depends on the initial conditions

of the embryonic mesoderm from which they develop. The pattern on pulp of each terminal pha-

lanx is considered as an individual pattern and is commonly referred to as a fingerprint (see, Figure

1). A fingerprint is believed to be unique to each person (and each finger)2. Fingerprints of even

identical twins are different.

Fingerprints are one of the most mature biometric technologies and are considered legitimate

proofs of evidence in courts of law all over the world. Fingerprints are, therefore, used in forensic

divisions worldwide for criminal investigations. More recently, an increasing number of civil-

ian and commercial applications are either using or actively considering to use fingerprint-based

identification because of a better understanding of fingerprints as well as demonstrated matching

performance than any other existing biometric technology.

4 History of Fingerprints

Humans have used fingerprints for personal identification for a very long time [23]. Modern fin-

gerprint matching techniques were initiated in the late 16th century [7]. Henry Fauld, in 1880,

first scientifically suggested the individuality and uniqueness of fingerprints. At the same time,

Herschel asserted that he had practiced fingerprint identification for about 20 years [23]. This dis-

covery established the foundation of modern fingerprint identification. In the late
� � � �

century,

Sir Francis Galton conducted an extensive study of fingerprints [23]. He introduced the minutiae

features for single fingerprint classification in 1888. The discovery of uniqueness of fingerprints

caused an immediate decline in the prevalent use of anthropometric methods of identification and

led to the adoption of fingerprints as a more efficient method of identification [29]. An important

advance in fingerprint identification was made in 1899 by Edward Henry, who (actually his two

assistants from India) established the famous “Henry system” of fingerprint classification [23, 7]:

an elaborate method of indexing fingerprints very much tuned to facilitating the human experts

2There is some anecdotal evidence that a fingerprint expert once found two (possibly latent) fingerprints belonging
to two distinct individuals having 10 identical minutiae.
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(a) (b) (c)

(d) (e) (f)

Figure 1: Fingerprints and a fingerprint classification schema involving six categories: (a) arch, (b)
tented arch, (c) right loop, (d) left loop, (e) whorl, and (f) twin loop. Critical points in a fingerprint,
called core and delta, are marked as squares and triangles. Note that an arch does not have a delta
or a core. One of the two deltas in (e) and both the deltas in (f) are not imaged. A sample minutiae
ridge ending ( � ) and ridge bifurcation ( � ) is illustrated in (e). Each image is 512 � 512 with 256
grey levels and is scanned at 512

� ���
resolution. All features points were manually extracted by

one of the authors.
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performing (manual) fingerprint identification. In the early
��� � �

century, fingerprint identifica-

tion was formally accepted as a valid personal identification method by law enforcement agencies

and became a standard procedure in forensics [23]. Fingerprint identification agencies were setup

worldwide and criminal fingerprint databases were established [23]. With the advent of livescan

fingerprinting and availability of cheap fingerprint sensors, fingerprints are increasingly used in

government and commercial applications for positive person identification.

5 System Architecture

The architecture of a fingerprint-based automatic identity authentication system is shown in Fig-

ure 2. It consists of four components: � � � user interface, � � � � system database, � � � � � enrollment

module, and � � ��� authentication module. The user interface provides mechanisms for a user to in-

dicate his/her identity and input his/her fingerprints into the system. The system database consists

of a collection of records, each of which corresponds to an authorized person that has access to

the system. Each record contains the following fields which are used for authentication purpose:

� � � user name of the person, � � � � minutiae templates of the person’s fingerprint, and � � � � � other

information (e.g., specific user privileges).

The task of enrollment module is to enroll persons and their fingerprints into the system

database. When the fingerprint images and the user name of a person to be enrolled are fed to

the enrollment module, a minutiae extraction algorithm is first applied to the fingerprint images

and the minutiae patterns are extracted. A quality checking algorithm is used to ensure that the

records in the system database only consist of fingerprints of good quality, in which a significant

number (default value is 25) of genuine minutiae may be detected. If a fingerprint image is of poor

quality, it is enhanced to improve the clarity of ridge/valley structures and mask out all the regions

that cannot be reliably recovered. The enhanced fingerprint image is fed to the minutiae extractor

again.

The task of authentication module is to authenticate the identity of the person who intends

to access the system. The person to be authenticated indicates his/her identity and places his/her

finger on the fingerprint scanner; a digital image of his/her fingerprint is captured; minutiae pattern

is extracted from the captured fingerprint image and fed to a matching algorithm which matches it

against the person’s minutiae templates stored in the system database to establish the identity.
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Figure 2: Architecture of an automatic identity authentication system.

6 Fingerprint Sensing

There are two primary methods of capturing a fingerprint image: inked (off-line) and live scan

(ink-less) (see Figure 3). An inked fingerprint image is typically acquired in the following way:

a trained professional3 obtains an impression of an inked finger on a paper and the impression is

then scanned using a flat bed document scanner. The live scan fingerprint is a collective term for a

fingerprint image directly obtained from the finger without the intermediate step of getting an im-

pression on a paper. Acquisition of inked fingerprints is cumbersome; in the context of an identity

authentication system, it is both infeasible and socially unacceptable. The most popular technology

to obtain a live-scan fingerprint image is based on optical frustrated total internal reflection (FTIR)

concept [22]. When a finger is placed on one side of a glass platen (prism), ridges of the finger are

3Possibly, for reasons of expediency, MasterCard sends fingerprint kits to their credit card customers. The kits are
used by the customers themselves to create an inked fingerprint impression to be used for enrollment.
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(a) (b)

(c) (d) (e)

Figure 3: Fingerprint sensing: (a) An inked fingerprint image could be captured from the inked
impression of a finger; (b) a livescan fingerprint is directly imaged from a live finger based on
optical total internal reflection principle: the light scatters where finger (e.g., ridges) touch the
glass prism and light reflects where finger (e.g., valleys) does not touch the glass prism. (c) rolled
fingerprints are images depicting nail-to-nail area of a finger (d) fingerprints captured using solid
state sensors show a smaller area of finger than a typical fingerprint dab captured using optical
scanners. (e) a latent fingerprint refers to partial print typically lifted from a scene of crime.
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in contact with the platen, while the valleys of the finger are not in contact with the platen. The

rest of the imaging system essentially consists of an assembly of an LED light source and a CCD

placed on the other side of the glass platen. The laser light source illuminates the glass at a certain

angle and the camera is placed such that it can capture the laser light reflected from the glass. The

light incidenting on the platen at the glass surface touched by the ridges is randomly scattered while

the light incidenting at the glass surface corresponding to valleys suffers total internal reflection.

Consequently, portions of the image formed on the imaging plane of the CCD corresponding to

ridges is dark and those corresponding to valleys is bright. More recently, capacitance-based solid

state live-scan fingerprint sensors are gaining popularity since they are very small in size and hold

promise of becoming inexpensive in the near future. A capacitance-based fingerprint sensor essen-

tially consists of an array of electrodes. The fingerprint skin acts as the other electrode, thereby,

forming a miniature capacitor. The capacitance due to the ridges is higher than those formed by

valleys. This differential capacitance is the basis of operation of a capacitance-based solid state

sensor [34].

7 Fingerprint Representation

Fingerprint representations are of two types: local and global. Major representations of the local

information in fingerprints are based on the entire image, finger ridges, pores on the ridges, or

salient features derived from the ridges. Representations predominantly based on ridge endings or

bifurcations (collectively known as minutiae (see Figure 4)) are the most common, primarily due to

the following reasons: (i) minutiae capture much of the individual information, (ii) minutiae-based

representations are storage efficient, and (iii) minutiae detection is relatively robust to various

sources of fingerprint degradation. Typically, minutiae-based representations rely on locations

of the minutiae and the directions of ridges at the minutiae location. Fingerprint classification

identifies the typical global representations of fingerprints and is the topic of Section 10. Some

global representations include information about locations of critical points (e.g., core and delta)

in a fingerprint.
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Ridge Ending Ridge Bifurcation

Figure 4: Ridge ending and ridge bifurcation.

8 Feature Extraction

A feature extractor finds the ridge endings and ridge bifurcations from the input fingerprint im-

ages. If ridges can be perfectly located in an input fingerprint image, then minutiae extraction is

just a trivial task of extracting singular points in a thinned ridge map. However, in practice, it is

not always possible to obtain a perfect ridge map. The performance of currently available minu-

tiae extraction algorithms depends heavily on the quality of the input fingerprint images. Due to a

number of factors (aberrant formations of epidermal ridges of fingerprints, postnatal marks, occu-

pational marks, problems with acquisition devices, etc.), fingerprint images may not always have

well-defined ridge structures.

A reliable minutiae extraction algorithm is critical to the performance of an automatic identity

authentication system using fingerprints. The overall flowchart of a typical algorithm [28, 18] is

depicted in Figure 6. It mainly consists of three components: � � � Orientation field estimation, � � � �
ridge extraction, and � � � � � minutiae extraction and postprocessing.

1. Orientation Estimation The orientation field of a fingerprint image represents the direc-

tionality of ridges in the fingerprint image. It plays a very important role in fingerprint image

analysis. A number of methods have been proposed to estimate the orientation field of finger-

print images [22]. Fingerprint image is typically divided into a number of non-overlapping

blocks (e.g., 32 � 32 pixels) and an orientation representative of the ridges in the block is

assigned to the block based on an analysis of grayscale gradients in the block. The block

orientation could be determined from the pixel gradient orientations based on, say, aver-

aging [22], voting [25], or optimization [28]. We have summarized orientation estimation

algorithm in Figure 5.

2. Segmentation It is important to localize the portions of fingerprint image depicting the fin-
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(a) Divide the input fingerprint image into blocks of size
�

�
�

.

(b) Compute the gradients ��� and ��� at each pixel in each block [4].

(c) Estimate the local orientation at each pixel � � � � � using the following equations [28]:

� � � � � � �
	�� 
 � ��� � � � � �
� 
 � ��� � � � � �

� ��� � � � ��� ����� � � ��� � (1)

� � � � � � �
	�� 
 � ��� � � � � �
� 
 � ��� � � � � � � ���� � �

� ����� ���� � � � ��� � � (2)

� � � � � �
	 �

� � ��� � � � � � � � � � �� ��� � � � � � � (3)

where
�

is the size of the local window; ��� and ��� are the gradient magnitudes in ! and "
directions, respectively.

(d) Compute the consistency level of the orientation field in the local neighborhood of a block
� � � � � with the following formula:# � � � � �
	 �$&% �' � ( ) � ( * + ,.-

� � � / � ��/ �0�1� � � � � � - �
�

(4)

-
� / �2�

-
	43 �

if � �5	 � � / �1��61798 � �
mod

798 � ��: � ;�� �
�<� � ;��

otherwise
� (5)

where = represents the local neighborhood around the block � � � � � (in our system, the size
of D is > �?> ); $

is the number of blocks within = ;
� � � / � � / � and

� � � � � � are local ridge
orientations at blocks � � / � � / � and � � � � � , respectively.

(e) If the consistency level (Eq.(5)) is above a certain threshold @�A , then the local orientations
around this region are re-estimated at a lower resolution level until

# � � � � � is below a certain
level.

Figure 5: Hierarchical orientation field estimation algorithm.
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ger (foreground). The simplest approaches segment the foreground by global or adaptive

thresholding. A novel and reliable approach to segmentation by Ratha et al. [28] exploits the

fact that there is significant difference in the magnitudes of variance in the graylevels along

and across the flow of a fingerprint ridge. Typically, block size for variance computation

spans 1-2 inter-ridge distance.

3. Ridge Detection The approaches to ridge detection use either simple or adaptive threshold-

ing. These approaches may not work for noisy and low contrast portions of the image. An

important property of the ridges in a fingerprint image is that the gray level values on ridges

attain their local maxima along a direction normal to the local ridge orientation [28, 18].

Pixels can be identified to be ridge pixels based on this property. The extracted ridges may

be thinned/cleaned using standard thinning [26] and connected component algorithms [27].

4. Minutiae Detection Once the thinned ridge map is available, the ridge pixels with three ridge

pixel neighbors are identified as ridge bifurcations and those with one ridge pixel neighbor

identified as ridge endings. However, all the minutia thus detected are not genuine due to

image processing artifacts and the noise in the fingerprint image.

5. Postprocessing In this stage, typically, genuine minutiae are gleaned from the extracted

minutiae using a number of heuristics. For instance, too many minutiae in a small neigh-

borhood may indicate noise and they could be discarded. Very close ridge endings oriented

anti-parallel to each other may indicate spurious minutia generated by a break in the ridge

due either to poor contrast or a cut in the finger. Two very closely located bifurcations sharing

a common short ridge often suggest extraneous minutia generated by bridging of adjacent

ridges as a result of dirt or image processing artifacts.

9 Fingerprint Enhancement

The performance of a fingerprint image matching algorithm relies critically on the quality of the in-

put fingerprint images. In practice, a significant percentage of acquired fingerprint images (approx-

imately 10% according to our experience) is of poor quality. The ridge structures in poor-quality
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Figure 6: Flowchart of the minutiae extraction algorithm [18].
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fingerprint images are not always well-defined and hence they can not be correctly detected. This

leads to the following problems: � � � a significant number of spurious minutiae may be created, � � � �
a large percentage of genuine minutiae may be ignored, and � � � � � large errors in minutiae localiza-

tion (position and orientation) may be introduced. In order to ensure that the performance of the

minutiae extraction algorithm will be robust with respect to the quality of fingerprint images, an

enhancement algorithm which can improve the clarity of the ridge structures is necessary.

Typically, fingerprint enhancement approaches [9, 20, 14, 5] employ frequency domain tech-

niques [20, 10, 9] and are computationally demanding. In a small local neighborhood, the ridges

and furrows approximately form a two-dimensional sinusoidal wave along the direction orthog-

onal to local ridge orientation. Thus, the ridges and furrows in a small local neighborhood have

well-defined local frequency and local orientation properties. The common approaches employ

bandpass filters which models the frequency domain characteristics of a good quality fingerprint

image. The poor quality fingerprint image is processed using the filter to block the extraneous noise

and pass the fingerprint signal. Some methods may estimate the orientation and/or frequency of

ridge in each block in the fingerprint image and adaptively tune the filter characteristics to match

the ridge characteristics.

One typical variation of this theme segments the image into non-overlapping square blocks of

widths larger than the average inter-ridge distance. Using a bank of directional bandpass filters,

each filter is matched to a predetermined model of generic fingerprint ridges flowing in a certain

direction; the filter generating a strong response indicates the dominant direction of the ridge flow

in the finger in the given block. The resulting orientation information is more accurate, leading

to more reliable features. A single block direction can never truly represent the directions of the

ridges in the block and may consequently introduce filter artifacts.

For instance, one common directional filter used for fingerprint enhancement is a Gabor fil-

ter [17]. Gabor filters have both frequency-selective and orientation-selective properties and have

optimal joint resolution in both spatial and frequency domains. The even-symmetric Gabor filter

has the general form [17]

� � ! � " � 	 � ! � 3 � �

�
� ! �� �� 6 " �� �������� 	�
 � � � ��
 ! � � (6)
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(a) (b) (c)

Figure 8: Fingerprint Enhancement Results: (a) a poor quality fingerprint; (b) minutia extracted
without image enhancement; and (c) minutiae extracted after image enhancement [11].
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Figure 9: An even-symmetric Gabor filter: (a) Gabor filter tuned to 60 cycles/width and
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tation; (b) corresponding MTF.
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where ��
 is the frequency of a sinusoidal plane wave along the x-axis, and
� � and

� � are the space

constants of the Gaussian envelope along x and y axes, respectively. Gabor filters with arbitrary

orientation can be obtained via a rotation of the ! � " coordinate system. The modulation transfer

function (MTF) of Gabor filter can be represented as� � � � ��� 	 � � � � � � � � ! � 3 � �

�
� � � � ��
 � �� �� 6 � �� �� � � 6 � ! � 3 � �

�
� � � � ��
 � �� �� 6 � �� �� � ��� �

(7)

where
� � =

� � � � � � and
� � =

� � � � � � . Figure 9 shows an even-symmetric Gabor filter and its MTF.

Typically, in a 500 dpi, 512 � 512 fingerprint image, a Gabor filter with � 
 = 60 cycles per image

width (height), the radial bandwidth of 2.5 octaves, and orientation
�

models the fingerprint ridges

flowing in the direction
��6 ��� �

.

We summarize a novel approach to fingerprint enhancement proposed by Hong et al. [11] (see

Figure 7). It decomposes the given fingerprint image into several component images using a bank

of directional Gabor bandpass filters and extracts ridges from each of the filtered bandpass images

using a typical feature extraction algorithm [18]. By integrating information from the sets of ridges

extracted from filtered images, the enhancement algorithm infers the region of fingerprint where

there is sufficient information to be considered for enhancement (recoverable region) and estimates

a coarse-level ridge map for the recoverable region. The information integration is based on the

observation that genuine ridges in a region evoke a strong response in the feature images extracted

from the filters oriented in the direction parallel to the ridge direction in that region and at most

a weak response in feature images extracted from the filters oriented in the direction orthogonal

to the ridge direction in that region. The coarse ridge map thus generated consists of the ridges

extracted from each filtered image which are mutually consistent and portions of the image where

the ridge information is consistent across the filtered images constitute recoverable region. The

orientation field estimated from the coarse ridge map (see Section 1) is more reliable than the

orientation estimation from the input fingerprint image.

After the orientation field is obtained, the fingerprint image can then be adaptively enhanced

by using the local orientation information. Let � � � ! � " � (i = 0, 1, 2, 3, 4, 5, 6, 7) denote the grey

level value at pixel � ! � " � of the filtered image corresponding to the orientation
� � , � � 	 ��� ���
	 > �

.

The grey level value at pixel � ! � " � of the enhanced image can be interpolated according to the
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Figure 10: Performance of Fingerprint Enhancement Algorithm.

following formula:

� � � � � ! � " � 	 � � ! � " � � � ' � ) � * � ! � " � 6 � � � � � ! � " � � � � ' � ) � * � ! � " � � (8)

where
� � ! � " ��	�� � ' � ) � *� � � 	 
 , � � ! � " ��	�� � ' � ) � *� � � 	 
�� 	 � ; , � � ! � " � 	�� ' � ) � * � � ' � ) � *� � � 	 , and

� � ! � " � represents

the value of local orientation field at pixel � ! � " � . The major reason that we interpolate the enhanced

image directly from the limited number of filtered images is that the filtered images are already

available and the above interpolation is computationally efficient.

An example illustrating the results of minutiae extraction algorithm on a noisy input image

and its enhanced counterpart is shown in Figure 8. The improvement in performance due to image

enhancement was evaluated using fingerprint matcher described in Section 11. Figure 10 shows im-

provement in accuracy of the matcher with and without image enhancement on the MSU database

consisting of 700 fingerprint images of 70 individuals (10 fingerprints per finger per individual).

10 Fingerprint Classification

The fingerprints have been traditionally classified into categories based on information in the global

patterns of ridges. In large scale fingerprint identification systems, elaborate methods of manual

fingerprint classification systems were developed to index individuals into bins based on classifi-

cation of their fingerprints; these methods of binning eliminate the need to match an input finger-
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print(s) to the entire fingerprint database in identification applications and significantly reduce the

computing requirements [8, 19].

Efforts in automatic fingerprint classification have been exclusively directed at replicating the

manual fingerprint classification system. Figure 1 shows one prevalent manual fingerprint classi-

fication scheme that has been the focus of many automatic fingerprint classification efforts. It is

important to note that the distribution of fingers into the six classes (shown in Figure 1) is highly

skewed. A fingerprint classification system should be invariant to rotation, translation, and elastic

distortion of the frictional skin. In addition, often a significant part of the finger may not be imaged

(e.g., dabs frequently miss deltas) and the classification methods requiring information from the

entire fingerprint may be too restrictive for many applications.

A number of approaches to fingerprint classification have been developed. Some of the ear-

liest approaches did not make use of the rich information in the ridge structures and exclusively

depended on the orientation field information. Although fingerprint landmarks provide very effec-

tive fingerprint class clues, methods relying on the fingerprint landmarks alone may not be very

successful due to lack of availability of such information in many fingerprint images and due to

the difficulty in extracting the landmark information from the noisy fingerprint images. As a re-

sult, the most successful approaches need to (i) supplement the orientation field information with

ridge information; (ii) use fingerprint landmark information when available but devise alternative

schemes when such information cannot be extracted from the input fingerprint images; and (iii)

use reliable structural/syntactic pattern recognition methods in addition to statistical methods.

We summarize a method of classification [12] which takes into consideration the above men-

tioned design criteria that has been tested on a large database of realistic fingerprints to classify

fingers into five major categories: right loop, left loop, arch, tented arch, and whorl4.

The orientation field determined from the input image may not be very accurate and the ex-

tracted ridges may contain many artifacts and, therefore, cannot be directly used for fingerprint

classification. A ridge verification stage assesses the reliability of the extracted ridges based upon

4Other types of prints, e.g., twin-loop, are not considered here but, in principle, could be lumped into “other” or
“reject” category.
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Figure 11: Flowchart of fingerprint classification algorithm. Inset also illustrates ridge classifica-
tion [12]. The “re-compute” option involves starting the classification algorithm with a different
preprocessing (e.g., smoothing) of the image.
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the length of each connected ridge segment and its alignment with other adjacent ridges. Paral-

lel adjacent subsegments typically indicate a good quality fingerprint region; the ridge/orientation

estimates in these regions are used to refine the estimates in the orientation field/ridge map.

1. Singular Points: The Poincare index [22] on the orientation field is used to determine the

number of delta (
$ , ) and core (

$ � ) points in the fingerprint. A digital closed curve,
�

,

about 25 pixels long, around each pixel is used to compute the Poincare index as defined

below:

��� � ��� ��� � � � � � �
	 �

� � 	�
�� � 
 
 � � � �
where


 � � �
	 ������ �����
� � � � � if -

� � � � - : ��� � �� 6 � � � � � if
� � � ��� � ��� � �� � � � � � � � � � � � � � � � �� � � �
	�� / � � � � � / � � � ��� � / � �0��� / � � � � � � � � ��� � � � �

� / 	 � ��6 � � � � � $�� �
�

is the orientation field, and
� � � � � and

� � � � � denote coordinates of the
� � �

point on the arc

length parameterized closed curve
�

.

2. Symmetry: The feature extraction stage also estimates an axis locally symmetric to the ridge

structures at the core and computes (i) � , angle between the symmetry axis and the line

segment joining core and delta, (i) � , average angle difference between the ridge orientation

and the orientation of the line segment joining the core and delta, and (iii)  , the number

of ridges crossing the line segment joining core and delta. The relative position, R, of delta

with respect to symmetry axis is determined as follows: R = 1 if the delta is on the right side

of symmetry axis, R = 0, otherwise.

3. Ridge Structure: The classifier not only uses the orientation information but also utilizes the

structural information in the extracted ridges. This feature summarizes the overall nature of
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Assigned ClassTrue Class
A T L R W

A 885 13 10 11 0
T 179 384 54 14 5
L 31 27 755 3 20
R 30 47 3 717 16
W 6 1 15 15 759

Table 1: Five-class classification results on the NIST-4 database; A-Arch, T-Tented Arch, L-Left
Loop, R-Right Loop, W-Whorl.

the ridge flow in the fingerprint. In particular, it classifies each ridge of the fingerprint into

three categories:

� Non-recurring ridges: the ridges which do not curve very much.

� Type-1 Recurring ridges: ridges which curve approximately
�

.

� Type-2 Fully Recurring ridges: ridge which curve by more than
�

.

The classification algorithm summarized here (see Figure 11) essentially devises a sequence of

tests for determining the class of a fingerprint and conducts simpler tests earlier in the decision tree.

For instance, two core points are typically detected for a whorl (see Figure 11) which is an easier

condition to verify than detecting the number of Type-2 recurring ridges. Another highlight of the

algorithm is that if does not detect the salient characteristics of any category from features detected

in a fingerprint; it recomputes the features with a different pre-processing method. For instance,

in the current implementation, the differential pre-processing consists of a different method/scale

of smoothing. As can be observed from the flowchart that the algorithm detects (i) whorls based

upon detection of either two core points or a sufficient number of Type-2 recurring ridges; (ii) arch

based upon the inability to detect either delta or core points; (iii) left (right) loops based on the

characteristic tilt of the symmetric axis, detection of a core point, and detection of either a delta

point or a sufficient number of Type-1 recurring curves; and (iv) tented arch based on relatively

upright symmetric axis, detection of a core point, and detection of either a delta point or a sufficient

number of Type-1 recurring curves.

Table 1 shows the results of the fingerprint classification algorithm on the NIST-4 database

which contains 4,000 images (image size is > � �
�

��;��
) taken from 2,000 different fingers, 2 images

per finger. Five fingerprint classes are defined: � � � Arch, � � � � Tented arch, � � � � � Left Loop, � � ���
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Right Loop, and � ��� Whorl. Fingerprints in this database are uniformly distributed among these

five classes (800 per class). The five-class error rate in classifying these 4,000 fingerprints is 12.5%.

The confusion matrix is given in Table 1; numbers shown in bold font are correct classifications.

Since a number of fingerprints in the NIST-4 database are labeled as belonging to possibly two

different classes, each row of the confusion matrix in Table 1 does not sum up to 800. For the

five-class problem, most of the classification errors are due to misclassifying a tented arch as an

arch. By combining these two arch categories into a single class, the error rate drops from 12.5%

to 7.7%. Besides the tented arch-arch errors, the other errors mainly come from misclassifications

between arch/tented arch and loops and due to poor image quality.

11 Fingerprint Matching

Given two (input and template) sets of features originating from two fingerprints, the objective of

the feature matching system is to determine whether or not the prints represent the same finger.

Fingerprint matching has been approached from several different strategies, like image-based [2],

ridge pattern-based, and point (minutiae) pattern-based fingerprint representations. There also exist

graph-based schemes [16, 15, 30] for fingerprint matching. Image-based matching may not toler-

ate large amounts of non-linear distortion in the fingerprint ridge structures. Matchers critically

relying on extraction of ridges or their connectivity information may display drastic performance

degradation with a deterioration in the quality of the input fingerprints. We, therefore, believe that

point pattern matching (minutiae matching) approach facilitates the design of a robust, simple, and

fast verification algorithm while maintaining a small template size.

The matching phase typically defines the similarity (distance) metric between two fingerprint

representations and determines whether a given pair of representations is captured from the same

finger (mated pair) based on whether this quantified (dis)similarity is greater (less) than a certain

(predetermined) threshold. The similarity metric is based on the concept of correspondence in

minutiae-based matching. A minutiae in the input fingerprint and a minutiae in the template fin-

gerprint are said to be corresponding if they represent the identical minutiae scanned from the same

finger.

Before the fingerprint representations could be matched, most minutia-based matchers first

transform (register) the input and template fingerprint features into a common frame of reference.
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Figure 12: Two different fingerprint impressions of the same finger. In order to know the corre-
spondence between the minutiae of these two fingerprint images, all the minutiae must be precisely
localized and the deformation must be recovered.

The registration essentially involves alignment based on rotation/translation and may optionally

include scaling. The parameters of alignment are typically estimated either from (i) singular points

in the fingerprints, e.g., core and delta locations; (ii) pose clustering based on minutia distribu-

tion [28]; or (iii) any other landmark features. For example, Jain et al. [18] use a rotation/translation

estimation method based on properties of ridge segment associated with ridge ending minutiae5.

There are two major challenges involved in determinating the correspondence between two

aligned fingerprint representations (see Figure 12): (i) dirt/leftover smudges on the sensing device

and the presence of scratches/cuts on the finger either introduce spurious minutiae or obliterate

the genuine minutiae; (ii) variations in the area of finger being imaged and its pressure on the

sensing device affect the number of genuine minutiae captured and introduce displacements of the

minutiae from their “true” locations due to elastic distortion of the fingerprint skin. Consequently,

a fingerprint matcher should not only assume that the input fingerprint is a transformed template

fingerprint by a similarity transformation (rotation, translation, and scale), but it should also toler-

ate both spurious minutiae as well as missing genuine minutiae and accommodate perturbations of

5The input and template minutiae used for the alignment will be referred to as reference minutiae below.
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Figure 13: Aligned ridge structures of mated pairs. Note that the best alignment in one part (mid-
left) of the image results in a large displacements between the corresponding minutiae in the other
regions (bottom right).

minutiae from their true locations. Figure 13 illustrates a typical situation of aligned ridge struc-

tures of mated pairs. Note that the best alignment in one part (top left) of the image may result

in a large amount of displacements between the corresponding minutiae in other regions (bottom

right). In addition, observe that the distortion is non-linear: given the amount of distortions at two

arbitrary locations on the finger, it is not possible to predict the distortions at all the intervening

points on the line joining the two points.

The adaptive elastic string matching algorithm [18] summarized in this chapter uses three at-

tributes of the aligned minutiae for matching: its distance from the reference minutiae (radius),

angle subtended to the reference minutiae (radial angle), and local direction of the associated

ridge (minutiae direction). The algorithm initiates the matching by first representing the aligned

input (template) minutiae as an input (template) minutiae string. The string representation is ob-

tained by imposing a linear ordering based on radial angles and radii. The resulting input and
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template minutiae strings are matched using an inexact string matching algorithm to establish the

correspondence.

The inexact string matching algorithm essentially transforms (edits) the input string to template

string and the number of edit operations is considered as a metric of the (dis)similarity between

the strings. While permitted edit operators model the impression variations in a representation

of a finger (deletion of the genuine minutiae, insertion of spurious minutiae, and perturbation of

the minutiae), the penalty associated with each edit operator models the likelihood of that edit.

The sum of penalties of all the edits (edit distance) defines the similarity between the input and

template minutiae strings. Among several possible sets of edits that permit the transformation of

the input minutiae string into the reference minutiae string, the string matching algorithm chooses

the transform associated with the minimum cost based on dynamic programming.

The algorithm tentatively considers a candidate (aligned) input and a candidate template minu-

tiae in the input and template minutiae string to be a mismatch if their attributes are not within a

tolerance window (see Figure 14) and penalizes them for deletion/insertion edit. If the attributes are

within the tolerance window, the amount of penalty associated with the tentative match is propor-

tional to the disparity in the values of the attributes in the minutiae. The algorithm accommodates
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Threshold False Acceptance False Reject False Acceptance False Reject
Value Rate Rate Rate Rate

(MSU) (MSU) (NIST 9) (NIST 9)

7 0.07% 7.1% 0.073% 12.4%
8 0.02% 9.4% 0.023% 14.6%
9 0.01% 12.5% 0.012% 16.9%

10 0 14.3% 0.003% 19.5%

Table 2: False acceptance and false reject rates on two data sets with different threshold values.

for the elastic distortion by adaptively adjusting the parameters of the tolerance window based

on the most recent successful tentative match. The tentative matches (and correspondences) are

accepted if the edit distance for those correspondences is smaller than any other correspondences.

Figure 15 shows the results of applying the matching algorithm to an input and a template

minutiae set pair. The outcome of the matching process is defined by a matching score. Matching

score is determined from the number of mated minutia from the correspondences associated with

the minimum cost of matching input and template minutiae string. The raw matching score is

normalized by the total number of minutia in the input and template fingerprint representations and

is used for deciding whether input and template fingerprints are mates. The higher the normalized

score, the larger the likelihood that the test and template fingerprints are the scans of the same

finger.

The results of performance evaluation of the fingerprint matching algorithm are illustrated in

Figure 16 for 1,350 fingerprint images in NIST 9 database [31] and in Figure 10 for 700 images of

70 individuals from the MSU database. Some sample points on the receiver operating characteris-

tics curve are tabulated in Table 2.

In order for an automatic identity authentication system to be acceptable in practice, the re-

sponse time of the system needs to be within a few seconds. Table 3 shows that our implemented

system does meet the practical response time requirement.
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(a) (b)

(c) (d)

Figure 15: Results of applying the matching algorithm to an input minutiae set and a template; (a)
input minutiae set; (b) template minutiae set; (c) alignment result based on the minutiae marked
with green circles; (d) matching result where template minutiae and their correspondences are
connected by green lines.

Minutiae Extraction Minutiae Matching Total
(seconds) (seconds) (seconds)

1.1 0.3 1.4

Table 3: Average CPU time for minutiae extraction and matching on a Sun ULTRA 1 workstation.
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Figure 16: Receiver Operating Characteristic Curve for NIST 9 (CD No. 1).

12 Summary and Future Prospects

With recent advances in fingerprint sensing technology and improvements in the accuracy and

matching speed of the fingerprint matching algorithms, automatic personal identification based on

fingerprint is becoming an attractive alternative/complement to the traditional methods of identi-

fication. We have provided an overview of the fingerprint-based identification and summarized

algorithms for fingerprint feature extraction, enhancement, matching, and classification. We have

also presented a performance evaluation of these algorithms.

The critical factor for the widespread use of fingerprints is in meeting the performance (e.g.,

matching speed and accuracy) standards demanded by emerging civilian identification applica-

tions. Unlike an identification based on passwords or tokens, performance of the fingerprint-based

identification is not perfect. There will be a growing demand for faster and more accurate fin-

gerprint matching algorithms which can (particularly) handle poor quality images. Some of the

emerging applications (e.g., fingerprint-based smartcards) will also benefit from a compact rep-

resentation of a fingerprint. The design of highly reliable, accurate, and foolproof biometrics-

based identification systems may warrant effective integration of discriminatory information con-

tained in several different biometrics and/or technologies [13]. The issues involved in integrating

fingerprint-based identification with other biometric or non-biometric technologies may constitute

an important research topic.

As biometric technology matures, there will be an increasing interaction among the (biometric)

market, (biometric) technology, and the (identification) applications. The emerging interaction is
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expected to be influenced by the added value of the technology, the sensitivities of the population,

and the credibility of the service provider. It is too early to predict where, how, and which biometric

technology would evolve and be mated with which applications. But it is certain that biometrics-

based identification will have a profound influence on the way we conduct our daily business. It

is also certain that, as the most mature and well-understood biometric, fingerprints will remain an

integral part of the preferred biometric-based identification solutions in the years to come.
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